

Positive-real functions: regularity, essential regularity, and a structure-immittance format

Jason Zheng Jiang

with

Sara Ying Zhang

Workshop on Networks and Control 05 July 2017

Funding support from EPSRC (EP/P013546/1) and Royal Society (IE151194)

In honor of Malcolm C. Smith on the occasion of his sixtieth birthday

......

Inerter

Mechanical	Electrical
$\frac{F}{\downarrow} Y(s) = \frac{k}{s}$	$\frac{i}{v_2} \underbrace{\qquad \qquad i}_{v_1} Y(s) = \frac{1}{Ls}$
$\frac{dF}{dt} = k(v_2 - v_1) \qquad \text{spring}$	$\frac{di}{dt} = \frac{1}{L}(v_2 - v_1)$ inductor
$\underbrace{F}_{\bullet} \underbrace{F}_{\bullet} Y(s) = bs$	$\begin{array}{c c} i \\ \hline v_2 \\ \hline v_1 \\ \hline v_1 \\ \hline v_1 \\ \end{array} Y(s) = Cs$
$F \stackrel{v_2}{=} b \frac{d(v_2 - v_1)}{dt} \text{inerter}$	$i = C \frac{d(v_2 - v_1)}{dt}$ capacitor
$F \qquad F \qquad F \qquad Y(s) = c$	$\frac{i}{v_2} \qquad \frac{i}{v_1} Y(s) = \frac{1}{R}$
$F = c(v_2 - v_1)$ damper	$i = \frac{1}{R}(v_2 - v_1)$ resistor

M.C. Smith, Synthesis of Mechanical Networks: The Inerter, IEEE Trans. on Automat. Contr., 2002.

Design of passive vibration absorbers

Structure-based

Immittance-based

Step 1: Identify *positive-real* functions, eg:

$$Z_1(s) = \frac{As^2 + Bs + C}{Ds^2 + Es + F}$$

Step 2: Synthesis the functions by network structures

Positive-real functions

SYNTHESIS OF A FINITE TWO-TERMINAL NETWORK WHOSE DRIVING-POINT IMPEDANCE IS A PRESCRIBED FUNCTION OF FREQUENCY

BY OTTO BRUNE 1 CONTENTS Part I. Introduction..... 1. Statement of the Problem. 191 2. Contributions of Previous Investigators..... 3. Necessary Conditions to be satisfied by the Impedance Function Part III. Synthesis of Networks with Prescribed Impedance Function. 208 1. Functions with not more than two poles in the interior of the left half plane 208 Part IV. Extension of the Method to the Determination of certain 3. Relation to Equivalent Networks obtained by affine trans-

PART I. INTRODUCTION

1. Statement of the Problem

In the well known methods of analysing the performance of linear passive electrical networks with lumped network elements it is usual to derive from the given structure of the network a scalar function $Z(\lambda)$ known as the impedance function of the network; this function determines completely the performance

¹ Containing the principal results of a research submitted for a doctor's degree in the Department of Electrical Engineering, Massachusetts Institute of Technology. The author is indebted to Dr. W. Cauer who suggested this research.

191

O. Brune showed that any positive-real function could be realised as the impedance or admittance of a network Comprising resistors, capacitors, inductors and *transformers*. (1931)

Positive-real functions

Letters to the Editor

The Ordering Reaction in Co-Pt Alloys[†] J. B. NEWKIRK^{*} A. H. GEISLER^{*} AND D. L. MARTIN^{**} March 2, 1949

A Nordering reaction can occur in binary alloys of cobalt and platinum whose composition is near 50 atomic percent. The maximum temperature of order is about 825°C for the 50 atomic percent alloy and lower for those off this composition. No other reaction occurs below the maximum temperature of order. The unit cell is face-centred cubic above this temperature and oction has for its prototype the one found in the CuAu alloy. Evidence is siven which indicates that at certain temperatures

Evidence is given which indicates that at certain temperatures and compositions the ordering reaction proceeds through a twophase stage that by holding within a measurable temperature range discrete regions of order and of disorder may be caused to exist together in equilibrium.

On the basis of preliminary evidence, it appears that at an early stage of the ordering process, obtenency between regions of order and of disorder may exist. Lattice straining, induced as a consequence of this, may account for the unusual physical properties which develop during the course of the ordering process. Thus, the process may resemble that of solid solution percipitation (aging) in its effect on certain physical properties. "Further study of the alloy is in progress.

4 This letter is part of the Special Section on the Pittaburgh X-Ray and Electron Diffraction Conference which appears on pages 725-746 of this issue. Graduate Student, Department of Metallurgical Engineering, Carnegie Institute of Technology, Pittaburgh 13, Pennayivania, Schenettady, New York.

Impedance Synthesis without Use of Transformers

R. BOTT AND R. J. DUFFIN Department of Mathematics, Carnegie Institute of Technology, Pittsburgh, Pennsylvania December 13, 1948

Let Z(z) be termed a B(rune) function If: (1) it is a rational function; (2) it is real for real z; and (3) the real part of Z is positive when the real part of z is positive. In his significant thesiz, 0. Brune's shows that the diving-point impedance of a passive network is a B function of the complex frequency variable z. Conversity, he shows that any B function can be realized by some passive network and gives rules for constructing such a network. In this synthesis he is forced to employ transformers with perfect coupling. It is recognized by Brune and others that the introduction of perfect transformers is objectionable from an engineering point of view. Prior to Brune, R. M. Foster⁴ had shown how to synthesize the driving-point impedance of networks containing no resistors by simple series-parallel combinations of inductors and capacitors. This note gives a similar synthesis of an arbitrary impedance by series-parallel combinations of inductors, resistors, and capacitors.

A B function can be expressed as the ratio of two polynomials without common factor. Let the "rank" be the sum of the degrees of these polynomials. Obviously any B function of rank O can be synthesized. Suppose, then, it has been shown that all B functions of rank lower than κ can be synthesized, and let $\mathcal{L}(s)$ be a B function of rank κ . Brune gives four rules for carrying out a mathematical induction to a B function of lower rank: (a) If Z has a pole on the imaginary axis, then Z can be syn⁻¹ thesized by a parallel resonant element in series with an impedance Z' of lower rank; Z = 1/(cs+1/k)+Z' where l⁻¹, c²O. (b) If Z has a zero on the imaginary axis, then Z can be synthesized by a series resonant element in parallel with an impedance Z' of lower rank; 1/Z = 1/(k+1/c)+1/2) where l_i c⁻¹ Z. (c) If the real part of Z does not vanish on the imaginary axis, and Z is a B function of no greater rank than Z. Brune's fourth rule, (d), which employs the perfect transformer, we replace by the following procedure:

(d) If none of these reductions are possible, there exists a w > 0such that Z(iw) is purely imaginary. First assume that Z(iw) = iwLwith L > 0. We now make use of a key theorem discovered by P. I. Richards¹ Let k be a positive number, and let

 $R(s) = \frac{kZ(s) - sZ(k)}{kZ(k) - sZ(s)}.$

Then R(x) is a *B* function whose rank does not exceed the rank of Z(x). Richards states this theorem for k=1; the above form is any obvious modification, because Z(kx) is also a *B* function. Let *k* satisfy the equation L=Z(k)/k. This is clearly always possible, because the function on the right varies from 0 to ∞ . With this choice of k, clearly R(iw)=0. Solving (1), or Z gives -1 and R(iw)=0.

 $Z(s) = (1/Z(k)R(s) + s/kZ(k))^{-1} + (k/Z(k)s + R(s)/Z(k))^{-1}$ $= (1/Z_1(s) + Cs)^{-1} + (1/Ls + 1/Z_2)^{-1}.$ (2)

Here $Z_i(x) = kLR(i)$, $Z_i(x) = kL/R(i)$, C = 1/kL. Since Z_i is a B function with a zero on the imaginary axis, it can be synthesized i Likewise, Z_i is a B function with a pole on the imaginary axis and can be synthesized. Z(i) is therefore synthesized by two networks in series. The first network consists of the impedance Z_i in parallel with a inductor L. In the case that $Z(iw) = -iwL_i$ milliar considerations applied to the function 1/2 show that Z is synthesized by two networks in parallel. The synthesized network is a second network is narallel. The synthesized how the works in parallel the whose heat which a sought restances are ladder networks. Richards the sought networks.

driving-on impedance of resistor-transmission-line circuits by means of an ingenious transformation of the Brune theory. The perfect transformers, which are again found to be objectionable, may be dispensed with by the above procedure.

Brune, J. Math. and Phys. 10, 191-236 (1931).
R. M. Foster, Bell Syst. Tech. J. 3, 259 (1924).
P. I. Richards, Duke Math. J. 14, 777-786 (1947).
P. I. Richards, Proc. I.R.E. 36, 217-220 (1948).

An Improvement in the Shadow-Cast Replica Technique S. J. SINGER* AND R. F. PETZOLD

Gates and Crellin Laboratories of Chemistry, California Institute Technology, Pasadena, California** May 6, 1949

WILLIAMS and Backus' have recently discussed in full disscope full the shadow-cast replica technique of electron microscope. In the course of an investigation of the electron microinchingue embedying an improvement which we wish to report. In this technique, a thin film of a metal such as chronium of uranium is deposited at an oblique angle onto the surface to be examined, by evaporation in a high vacuum. One method of removing this replica from the surface involves first, the deposition of a thin film dobatt 1000/0 of paradidon on top of the metal film?

JOURNAL OF APPLIED PHYSICS

Bott and Duffin showed that the transformers were unnecessary in the synthesis of positivereal functions. (1949)

Question: what is the minimal realisation of the positive-real functions?

05 July 2017

Ladenheim's master thesis (1948)

Ladenheim considered all networks with at most five elements and at most two reactive elements, and reduced the whole set to *108* networks (1948).

Questions not answered:

- What is the totality of biquadratics which may be realised?
- How many different networks are needed?

.....

05 July 2017

Regularity and Essential Regularity

Regular positive-real functions

A positive-real function Z(s) is defined to be *regular* if the smallest value of $\operatorname{Re}(Z(j\omega))$ or $\operatorname{Re}(Z^{-1}(j\omega))$ occurs at $\omega = 0$ or $\omega = \infty$.

Example $Z_1(s) = \left(\frac{s+2}{s+1}\right)^2$

Smallest value of $\operatorname{Re}(Z_1(j\omega))$ occurs at $\omega = \infty$, hence $Z_1(s)$ is regular.

J.Z. Jiang and M.C. Smith, Regular positive-real functions and five-element network synthesis for electrical and mechanical networks, IEEE Trans. On Automat. Contr. 2011.

Questions not answered:

- What is the totality of biquadratics which may be realised?
- How many different networks are needed?

Answers:

- All 103 series parallel networks are regular.
- Six networks can cover all regular biquadratics.
- All bridge networks are regular apart from two networks.

	-			(
*	Bred.				1
	62402(818282) 4628248282)	4	A CONTRACTOR	1	RP(AADS)-IX R(CAPS)
	(² 3+ ² 5) ¹ 5 ¹ 5	106	Ţſ		1
	R ₃ (N ₃ +F ₂)			3	SCIANDINAL SCIENCE
	SUNA,	Value		24	
	101-175		4	2	н
-	F10282866	a + (32-80)	ar [ar(440-6	-	1
140	1	2428	4	1	3.
Ē	100			1	8

Foster preamble for a positive-real Z(s)

Subtract minimum real part

 $Z = R + Z_1$

Removal of poles/zeros on $\{0\} \cup \{\infty\}$

$$Z = Ls + Z_1$$

Removal of poles/zeros on jR

$$Z = \left(\frac{As}{s^2 + \omega^2} + Y_1\right)^{-1}$$

Regular positive-real functions Z(s)

A positive-real function Z(s) is defined to be *regular* if the smallest value of Re($Z(j\omega)$) or Re($Z^{-1}(j\omega)$) occurs at $\omega = 0$ or $\omega = \infty$.

where Z_1 is a positive-real function with one McMillan degree less than Z.

Essential-regular positive-real functions Z(s)

where Z_1 is a regular positive-real function with one McMillan degree less than Z, and this procedure can be executed till the McMillan degree equals 0.

S.Y. Zhang, J. Z. Jiang, H. L. Wang and S.A. Neild, Synthesis of essential-regular bicubic impedances, International Journal of circuit theory and applications, 2017.

Relations amongst regular (R), essential-regular (ES), foster preamble realisable (FP) and positive-real (PR) functions with arbitrary McMillian degree *N*

05 July 2017

Design of passive vibration absorbers

Structure-based

Immittance-based

Step 1: Identify positive-real functions, eg:

$$Z_1(s) = \frac{As^2 + Bs + C}{Ds^2 + Es + F}$$

Step 2: Synthesis the functions by network structures

Comparison of the two approaches

Structure-based

Ability to cover a wide range of layout possibilities

Element values are important

S.Y. Zhang, J.Z. Jiang and S.A. Neild, Optimal Configurations for a Linear Vibration Suppression Device in a Multi-Storey Building, Structural Control and Health Monitoring, 2016.

Comparison of the two approaches

Topological information is important

A prototype steering compensator device, University of Cambridge

S. Evangelou, D.J.N. Limebeer, R.S. Sharp and M.C. Smith, Steering compensation for high-performance motorcycles, Transactions of ASME, Journal of Applied Mechanics, 2017.

Topological information is important

A prototype fluid inerter built and tested at the University of Bristol

Comparison of the two approaches

Comparison of the two approaches

? Is there an alternative approach which has all the advantages

A structure-immittance format

- The structural immittances can be obtained based on generic networks
- A general formulation of generic network has been established for networks with three elements P p, Q q, R r where $P \le Q \le R$
 - \checkmark *P*, *Q* are base elements and *R* is added element

Sara Ying Zhang, Jason Zheng Jiang and Simon Neild, Passive Vibration Control: A Structure-immittance approach, Proceedings of Royal Society, 2017

Case demonstration: networks with one damper, one inerter and one spring

 $Y_1(s) = \frac{bcs^2 + b(k_4 + k_5)s + c(k_2 + k_5)}{bc(1/k_3)s^3 + bs^2 + cs + k_2 + k_4}$

Structural immittances

Generic

networks

$$Y_2(s) = \frac{bc(1/k_1 + 1/k_3)s^3 + bs^2 + cs + k_2}{b(1/k_1 + 1/k_4)s^3 + c(1/k_3 + 1/k_4)s^2 + s}$$

Conditions: for $Y_1(s)$, at most one of the parameters k_2 , $1/k_3$, k_4 , k_5 is positive and the others equal 0, for $Y_2(s)$, at most one of the parameters $1/k_1$, k_2 , $1/k_3$, $1/k_4$ is positive and the others equal 0

bristol.ac.uk

05 July 2017

Case demonstration: networks with one damper, one inerter and one spring

Full set of networks

Structure-immittance approach

Structural immittances can be obtained based on generic networks, which

- cover a full set of series-parallel networks with predetermined numbers of each element type,
- make use of element values as variables,
- contain explicit topological information for each network layout possibility

Civil engineering case study

Inertial damper

TVMD

TMDI

Performance index: Relative displacements of the building storeys to the base

 $J_{\infty} = \max_{i=1:3} (\left\| T_{\hat{R} \to \hat{Z}_i} \right\|_{\infty})$

Constraints: $0 \text{ kg} \le b \le 3000 \text{ kg}, 0.01 \text{ kNs/m} \le c \le 15 \text{ kNs/m}$

Optimisation results for the 1k case

1 *b*, 1 *c*, 1 *k*

05 July 2017

Automotive case study

Performance index: Ride comfort $J_1 = 2\pi (V\kappa)^{1/2} \| sT_{\hat{z}_r \to \hat{z}_s} \|_2$

Automotive case study

• Optimal configurations with one damper, one spring and at most two inerters

Happy birthday, Malcolm

European Control Conference, Budapest, 2009

Appendix-Relations

- Essential-regular functions are all regular, (ES \implies R).
- Essential-regular functions can always be realised via Foster Preamble, (ES \implies FP).
- Relation of regular and Foster preamble is dependent on the McMillan degree of functions (N).

For bilinear and biquadratic functions, N = 1, 2: R \iff ES

Example:

Regular realisation:

If N = 1, Z_1 is a constant. If N = 2, Z_1 is a bilinear function.

For bilinear and biquadratic functions, N = 1, 2: FP \iff ES

Example:

Hence, $R \iff ES \iff FP$

Appendix-Relations

For bicubic functions, N = 3: ES \implies R \implies FP

Example:

Regular realisation:

 Z_1 is a positive-real biquadratic function, where the minimum positive-real function cannot be realised by Foster preamble.

For bicubic functions, N = 3: ES \implies FP \implies R

Example:

Appendix-Relations

For functions Z(s) with McMillan degree $N \ge 4$:

Similar to bicubic functions, $ES \implies R \implies FP$

For functions with McMillan degree $N \ge 4$: ES \implies FP \implies R

Example:

If N = 4, Z_1 is a biquadratic function realisable via foster preamble, then Z(s) can be non-regular. For higher degrees of functions, similar results can be obtained.

Appendix-Origin of the idea of generic network formulation

Stage A: Two reactive elements belong to different networks

Stage B: These two networks are combined together

Stage C: Remaining resistors/dampers are connected in series or in parallel

Jason Zheng Jiang and Malcolm C. Smith. Regular positive-real functions and passive networks comprising two reactive elements. In Proc. of the European Control Conf., Budapest, Hungary. 2009.

Appendix-Origin of the idea of generic network formulation

Appendix-Case demonstration: networks with one damper, one inerter and one spring

Stage A: the damper and the inerter belong to separate generic sub-networks;

Inerter sub-network

generic subnetwork

Damper sub-network

Appendix-Case demonstration: networks with one damper, one inerter and one spring

Stage A: the damper and the inerter belong to separate generic sub-networks;

Inerter sub-network Damper sub-network e^{-1} e^{-1}

Condition: at most one spring is *present* and the others are *removed*

<u>Present:</u> an element has positive and finite value

<u>*Removed:*</u> an element takes the value of 0 or ∞ – ensure that no other elements are locked rigid and the terminals are not disconnected;

Appendix-Case demonstration: networks with one damper, one inerter and one spring

Stage B: the damper and inerter generic sub-networks are connected either in series or in parallel;

Condition: at most one spring is present

Condition: at most one spring is present

Appendix-Case demonstration: networks with one damper, one inerter and one spring

Stage C: the remaining springs are added in series or in parallel.

Condition: at most one spring is present

bristol.ac.uk

 κ_4

05 July 2017

Appendix-Inclusion of the mass

Appendix-Inclusion of the mass

Treating the attached mass as an optimisable part of the structure

Example: consider Y(s) has one inerter, one damper and one spring

Appendix-Inclusion of the mass

Appendix-Automotive case study

• Candidate layouts: structures with one damper, one spring and at most two inerters

