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This paper presents an algorithm for adaptively stabilizing and
asymptotically regulating an arbitrary single-input single-output
linear time-invariant plant, which is controllable and observable,
of known order n, and has unknown parameters. No further
assumptions are made. No external probing signal is required.
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Åstrom & Wittenmark 1995:
“Unfortunately, there is no collection of results that can be
called a theory of adaptive control in the sense specified.”

Global Stability and Performance?

Conclusions from rich literature in the 1970-80s:

◮ Adaptive controllers can be made to converge under ideal
conditions and without forgetting factor in the estimator.

◮ Forgetting factors are desirable in practice!

◮ Converging controller gains give lack of excitation.

◮ External probing saves stability, but worsen performance.

◮ Dual control needed: Exploration/exploitation trade-off.

Outline

◮ A “simple” adaptive problem

◮ Using recent progress on concentration inequalites

◮ Multivariable extensions
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A “Simple” Adaptive Control Problem

A scalar system, one input ut, one disturbance wt and one
unknown parameter a ∈ R:

xt+1 = axt + ut +wt

Problem:
What is the smallest {2-gain from w to x achievable by a causal
(possibly adaptive) feedback law from x to u?
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A “Simple” Adaptive Control Problem
A scalar system, one input ut, one disturbance wt and one
unknown parameter a ∈ R:

xt+1 = axt + ut +wt

Self-tuning controller:

ât =
∑t−1

k=1(xk+1 − uk)xk∑t−1
k=1 x2

k

ut = −âtxt

Prove bounds on estimation error and regret!
Analyse interplay between exploration and exploitation.
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Tail and Concentration Inequalites

◮ Mathematics (measure theory, combinatorics, analysis)
◮ Compressed sensing
◮ Statistical model selection
◮ Machine Learning
◮ Network Routing
◮ Pattern recognition

...

The Chernoff Bound

Let θ > 0. Then the probability that the random variable X
exceeds a is bounded above by the expected value of eθ (X−a).

P[X > a] = Eχa(X ) ≤ Eeθ (X−a)

a

eθ (X−a)

χa(X ) =
{

1 if X > a
0 else

Example: X Gaussian with unit variance.
Eeθ (X−10) = eθ 2/2−10θ , so P[X > 10] ≤ minθ eθ 2/2−10θ = e−50.
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“Random Design” Linear Regression

xt+1 = axt + ut +wt

Least-squares esimate:

ât =
∑t

k=1(xk+1 − uk)xk∑t
k=1 x2

k
ât − at =

∑t
k=1 wkxk∑t

k=1 x2
k

Chernoff gives

P
[
ât − at ≥ ρ

]
= P

[∑t
k=1 wkxk ≥ ρ

∑t
k=1 x2

k
]
≤ 1
(1+ ρ2)t/2

independently of control law uk = µ(xk)!

pât − atp

t

Decay of Regret
xt+1 = axt + ut +wt with self-tuning controller ut = −ât−1xt.

Define Xt =
∑t

k=1 x2
k and Yt =

∑t
k=1 wkxk. Then

xt+1 =
Yt−1

Xt−1
xt +wt

pxt+1p√
Xt

≤
∣∣∣∣

Yt−1

Xt−1

∣∣∣∣+
pwtp√
Xt−1

pxt+2p ≤
(

Y2
t−1

Xt−1
+w2

t

) pxtp
Xt−1

+
∣∣∣∣

Yt−1

Xt−1
wt

∣∣∣∣+ pwt+1p
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A Matrix Chernoff Bound

Let X be a random matrix. The probability that the maximal
eigenvalue of X exceeds a is bounded above as follows:

P[λmax(X )(X ) > a] ≤ trEeθ (X−aI)

a

A Less Simple Adaptive Control Problem
For a MIMO system, with unknown A, B ∈ Rn$n:

xt+1 = Axt + But +wt

Self-tuning controller:

[
Ât B̂t

]
=

t−1∑

k=1

xk+1

[
xk
uk

]( t−1∑

k=1

[
xk
uk

] [
xk
uk

]T
)−1

ut = −B̂−1
t Âtxt

On-going work: Bounds on estimation error and regret!

∥∥∥
[

Ât − At B̂t − Bt

]∥∥∥
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Summary

Conclusion:
Forgetting factor needs to be combined with external excitation.
But when and how much?

Theory of the 1980s were lacking efficient tools for dual control.

Good News:
Powerful theory on stochastic tail and concentration bounds!

Supports exploration/exploitation trade-off analysis.

Congratulations Malcolm!
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