Tracking beyond the Nyquist frequency in sampled-data systems

- going beyond the sampling limit

Dedicated to Malcolm Smith on the occasion of his 60th birthday

Yutaka Yamamoto Kyoto University, Emeritus CentraleSupelec

MalcolmFest

- Many conferences
- 1997, few days visit to Cambridge

Malcolm playing piano at my home, after CDC 1996 Kobe MalcolmFest

July 5, 2017

Control 2000

Joint work with

Kaoru Yamamoto, Lund University

Masaaki Nagahara, U. Kitakyshu

Topic of this talk

Tracking to signals beyond the Nyquist frequency

MalcolmFest

WHAT'S SO SPECIAL ABOUT IT?

MalcolmFest

 Communication in the Presence of Noise, C. E. Shannon, Proc. IRE, vol. 37, 1949, pp. 10–21.

- How fast should we sample in transmitting data through a channel?
- ⇒ Unique reconstruction below the Nyquist frequency

Claude Elwood Shannon (1916-2001) July 5, 2017

High-freq. intersample information can be lost

If no high-freq. components beyond the Nyquist frequency (=1/2 of sampling freq.) → unique restoration

→ Whittaker-Shannon-Someya sampling theorem

Observation

- Low and high frequencies cannot be distinguished.
- ⇒ truncate high frequency and concentrate on low frequency
- Bound = π/h , Nyquist frequency
- This "Shannon paradigm" has been prevalent for the past 60+ years

Popular (but wrong) understanding of the Shannon paradigm

- We can do nothing for signals beyond the Nyquist frequency
- This is wrong
- Hidden assumption: no information on high-freq. ⇒ Band limiting hypothesis

Sampled-data Design Model

Sampled-data H^{∞} control problem

Moving image demo

C:¥Program 36)¥VideoLAN¥VI

Left: Bicubic - no high freq. beyond Nyquist freq Right: yy (reconstructed high freq.)

- Signal generator model F(s)
- This contains information on high frequency
- Allows us to recover high freq.
 components

New question

Can we control signals beyond the Nyquist freq.?

Dates back to an old question in 1993
"Can we control high-freq. through aliases?"

- Hard disk drives
- Often high-freq. disturbances (due to winds)
- Sampling frequency is limited by a physical limitation
- Can we reject such high-freq. disturbances? (beyond the Nyquist frequency)

1st Tracking Problem

- Sampled-data system
- Sampling period h
- Nyquist frequency: π/h [rad/sec]
- Can we track a reference with frequency higher than π/h ?

- We need upsampling to take care of the intersampling behavior
- We need a proper weighting in the high frequency range (i.e., right signal model)

Example

•
$$P(s) = \frac{1}{s^2 + 2s + 1}$$

• $h = 1$, Nyquist freq. = π
• $r(t) = (3\pi/2)t$
• $F(s) = \frac{s}{s^2 + 0.1s + (3\pi/2)^2}$, peak at $(3\pi/2)$

Example - results

Presented at the CDC 2016, Las Vegas

Poles in the controller

This gives rise to an approx. internal model along with the upsampler+fast hold

Poles at $e^{\pm j(3/2\pi)} = \pm j$.

- Disturbance rejection
- More than one reference or disturbance signals?
- robustness

More than one signals

- Standard recipe: weights at two frequencies
 - May work, but
- Fails if they are separated by π
- Sampling cannot distinguish two signals

Two step design: 1. Design K₁ for low frequency 2. Then design K_2 $\sin \pi t/2 + \sin 3\pi t/2$ $\mathcal{H}_{h/M}$ $K_2(z)$ disturbance F(s) v_1 $K_1(z)$ \mathscr{H}_h

Two step design configuration

$$F(s) = \frac{50s}{(s^2 + 0.2s + \omega_1^2)(s^2 + 0.1s + \omega_2^2)}$$

Fig. 8. System output (solid) against disturbance $\sin(\pi/2)t + \sin(3\pi/2)t$ (dotted).

Conclusion

- Tracking/rejection are possible for signals beyond the Nyquist frequency
- Not limited by the Shannon paradigm
- Crucial elements:
 - a. Physical model
 - b. appropriate weighting
 - c. upsampling (multirate processing)

Many more applications expected

Happy 60th Malcolm!

YY Fest 2010

Symposium on Systems, Control, and Signal Processing In honor of Yutaka Yamamoto on the occasion of his 60-th birthday

YYFest, 2010

MTNS 2006, Kyoto

I want to thank you for yet another:

- Malcolm was Kaoru's Ph. D. supervisor for 2011-2015
- Kaoru got a Ph. D. under his supervision
- Thesis title: "Disturbance Attenuation in Mass Chains with Passive Interconnection"

Thank you Make on the second of your of the second of the