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Happy Birthday Malcolm!
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Hankel Matrices: Notation

Suppose {ft}t≥1 is a sequence of real numbers. The associated
infinite and finite Hankel matrices are defined as

Hf,∞ :=

 f1 f2 f3 . . .
f2 f3 f4 . . .
...

...
...

. . .

 ,

Hf,n :=


f1 f2 . . . fn−1 fn
f2 f3 . . . fn fn+1
...

...
. . .

...
...

fn fn+1 . . . f2n−2 f2n−1

 ∈ Rn×n.
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An Old Theorem

Theorem

(Kronecker (1881)) Suppose {ft}t≥1 is an `1 sequence. Then
rank(Hf,∞) is finite if and only if the power series

f̃(z) =

∞∑
t=1

ftz
t−1

defines a rational function of z. If so the rank of Hf,∞ is the
degree of the rational function.
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A Basic Fact

Consider a linear discrete-time SISO system

xt+1 = Axt +But, yt = Cxt,

where the pairs (A,B) and (C,A) are controllable and observable
respectively. Define the unit pulse response and transfer function
of the system as

ht = CAt−1B, t ≥ 1, h̃(z) =

∞∑
t=1

htz
t−1.

Then the dimension of A is the degree of h̃(z), which is in turn the
rank of Hh,∞.
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Partial Realization: Problem Formulation

Original: Given a finite sequence {ht}mt=1, find an infinite
sequence {ft}t≥1 such that (i) f(t) = h(t) for t = 1, . . . ,m
(denoted as fm

1 = hm1 ), and (ii) rank(Hf,∞) is minimized.

Realistic: Given a finite sequence {ht}mt=1, and an integer n� m,
find a finite sequence {ft}2n−1t=1 such that (i) fm

1 = hm1 , and (ii)
rank(Hf,n) is minimized.
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A Simple Observation

Suppose {ht}mt=1 is a subsequence of an infinite sequence {ht}t≥1
such that Hh,∞ has finite rank, say d. Then for all n, Hh,n is a
submatrix of Hh,∞. Hence rank(Hh,n) ≤ d for all n. Therefore, for
each integer n ≥ 2m− 1,{

min
f∈R2n−1

rank(Hf,n) s.t. fm
1 = hm1

}
≤ d.
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Matrix Completion Problem

Problem 1: Suppose X ∈ Rm×n is a fixed but unknown matrix of
rank k � min{n,m}. Reconstruct X by measuring just some
elements of X.

Problem 2: Given integers n,m, and a subset S ⊆ [m]× [n],1 and
given real numbers xi,j , (i, j) ∈ S, “fill up” the remaining entries
so as to minimize the rank. Precisely

min
Z∈Rm×n

rank(Z) s.t. zij = xij ∀(i, j) ∈ S.

Problem 2 is NP-hard.

1Here [n] = {1, . . . , n}.
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The Nuclear Norm of a Matrix

The nuclear norm of a matrix A is the sum of its singular values,
and is denoted by ‖ · ‖N (or ‖ · ‖∗ by other authors).

The nuclear norm is the convex envelope of the rank function
(over the unit sphere in the spectral norm); that is, ‖ · ‖N is the
largest convex function that is always ≤ the rank of a matrix, over
the set of matrix whose maximum singular value is ≤ 1.
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Solution via Nuclear Norm Minimization

Replace rank(·) by ‖ · ‖N as the objective function.

Modified Problem: Given integers n,m, and a subset
S ⊆ [m]× [n], and real numbers xi,j , (i, j) ∈ S,

min
Z∈Rm×n

‖Z‖N s.t. zij = xij ∀(i, j) ∈ S.

This is a convex optimization problem and thus tractable.
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Available Results on Matrix Completion (Paraphrase)

If a low rank matrix X is sampled uniformly at random, and the
above nuclear norm minimization problem is solved, then under
suitable “incoherence” conditions, the error ‖Z∗ −X‖S is small,
with high probability.2

2Here ‖ · ‖S denote the spectral norm, i.e., the largest singular value of a
matrix.
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Reprise

Recall the notation: If f ∈ R2n−1, then

Hf,n :=


f1 f2 . . . fn−1 fn
f2 f3 . . . fn fn+1
...

...
. . .

...
...

fn fn+1 . . . f2n−2 f2n−1


is an n× n Hankel matrix.
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Problem Formulation

Modified Partial Realization Problem: Given {ht}mt=1, and
n� m,

min
f∈R2n−1

‖Hf,n‖N s.t. fm
1 = hm1 .

This approach seems to work surprisingly well!
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Nonstandard Partial Realization Problem

Why specify only first m elements of the unit pulse response? Why
not specify some m elements?

The above problem formulation still makes sense in this case.

In contrast, Nehari’s theorem requires one to specify consecutive
derivatives of a function.
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Example No. 1

A fourth-order system defined by

A =


0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

0.3528 0.0490 0.2300 0.1000

 ,

B = [ 0 0 0 1 ]>, C = [ 1 3 2 0 ],

The system poles are at 0.9,−0.8,±0.7i.
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Recovery Using First m Samples

The system is of order 4. Using the first m elements of the unit
pulse response, identify the rest using nuclear norm minimization.

With n = 50 (so that 2n− 1 = 99), and m = 15 (so that the first
15 samples are matched), the unit pulse response is recovered.

Results are shown on next few slides.
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Recovery Using 15 Samples
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Error in Recovery Using 15 Samples
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Example No. 2

A fourth-order system defined by

A =


0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

0.6498 0.0902 −0.1825 0.1000

 ,

B = [ 0 0 0 1 ]>C = [ 1 3 2 0 ].

The system poles are at 0.9,−0.8,±0.95i, So the system is stable
but highly oscillatory, as shown on next slide.
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True Unit Pulse Response
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Recovery Using First m Samples

The system is of order 4. Using the first m elements of the unit
pulse response, identify the rest using nuclear norm minimization.

With n = 50 (so that 2n− 1 = 99), and m = 20 or 25 (so that the
first 20 or 25 samples are matched), the unit pulse response is
recovered.

Results are good, and are shown on next few slides.
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Recovery Using 20 Samples
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True and Recovered Singular Values of Hankel Matrix
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Recovery Using 25 Samples
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True and Recovered Singular Values of Hankel Matrix
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Partial Realization with Missing Samples

Suppose that out of the first 30 samples, we miss out samples
3, 9, 12, 19, 22. Define

S := {1, . . . , 30} \ {3, 9, 12, 19, 22}.

We minimize the nuclear norm of H(f) subject to the constraint
that ft = ht for all t ∈ S.

Results shown on next page.
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Partial Realization with Missing Samples (Cont’d)
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Theoretical Justification?

That is work in progress.

General approach:

Write down optimality conditions for convex optimization
problem (easy!).

Determine conditions under which only the true system
satisfies these conditions (hard!)
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Questions?
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